Journal of Organometallic Chemistry, 365 (1989) 201–206 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 09613

Reactions of thallium(III) chloride with (aryl)silver(I) complexes. Crystal structure of [Tl(mes)₂][TlCl₃(mes)] (mes = mesityl)

Antonio Laguna,

Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza (Spain)

Eduardo J. Fernández, Aránzazu Mendía, M^a. Elena Ruiz-Romero,

Colegio Universitario de la Rioja, Logroño (Spain)

and Peter G. Jones

Institut für Anorganische und Analytische Chemie der Technischen Universität, Hagenring 30, 3300 Braunschweig (Fed. Rep. of Germany)

(Received October 18th, 1988)

Abstract

The arylsilver derivatives AgR (R = mesityl, $C_6F_3H_2$, C_6F_5) react with TlCl₃ to give arylthallium(III) complexes of the types [TlR₂][TlCl₃R], TlClR₂ or TlR₃. The structure of [Tl(mes)₂][TlCl₃(mes)] has been established by X-ray crystallography; it consists of linear [Tl(mes)₂]⁺ cations and tetrahedral [TlCl₃(mes)]⁻ anions, linked into chains by additional weak Tl...Cl interactions.

Introduction

We recently reported the use of (polyhalophenyl)silver(I) complexes as arylating agents for halogold-(I), -(II) or -(III) derivatives [1]. We have now extended the study to the synthesis of arylthallium(III) complexes of the types $[TIR_2][TICl_3R]$, TlClR₂ or TlR₃ (where $R = C_6F_5$, 2,4,6- $C_6F_3H_2$ or mesityl) by the reaction of AgR with thallium(III) chloride.

Results and discussion

The syntheses of AgC_6F_5 , $Ag(C_6F_3H_2)$, and Ag(mes) (mes = mesityl) have been described elsewhere [1-3]. The reaction of AgR with TlCl₃ gives different products, depending on the molar ratio and the R group. For a TlCl₃/AgR ratio of 1/1.5,

Scheme 1

[TIR₂][TICl₃R] is obtained for R = mes (1, 53% yield) or R = C₆F₃H₂ (2, 55% yield), but TICIR₂ (45% yield) for R = C₆F₅ (Scheme 1). (The last compound had already been prepared by other means [4,5].) Complexes 1 and 2 are air- and moisture-stable white solids. They are soluble in acetone, dichloromethane, chloroform, and nitromethane, and slightly soluble or insoluble in diethyl ether and aliphatic hydrocarbons.

The structure of complex 1 was established by X-ray diffraction studies. Single crystals were obtained by slow diffusion of diethyl ether into a concentrated dichloromethane solution of 1 at -10° C. The complex (Fig. 1) consists to a first approximation of isolated [Tl(mes)₂]⁺ cations and [TlCl₃(mes)]⁻ anions. The cations are essentially linear at thallium (C-Tl-C 173.1(4)°), with Tl-C bond lengths of 2.121(11), 2.131(10) Å and a dihedral angle of 9° between the aromatic rings.

Fig. 1. One of the polymeric chains of $[Tl(mes)_2][TlCl_3(mes)]$ in the unit cell; the other chain (related by a centre of symmetry) is omitted. Radii are arbitrary. The weak T1...Cl contacts are indicated by dotted lines.

Isolated TIR₂⁺ cations are well known for R = Me [6], but we are not aware of any other examples R = aryl; thallium(III) has an appreciable tendency to increase its coordination number by dimer or polymer formation, often involving irregular coordination geometry (see, e.g., refs. 7). The anions adopt a somewhat distorted tetrahedral coordination geometry, with Tl-Cl 2.464, 2.482, 2.536(3), Tl-C 2.149(10) Å and bond angles 90.1–129.3°. This appears to be the first example of a Cl₃C coordination sphere for Tl^{1II}; Cl₂C₂ is known in the (Me₃SiCH₂)₂TlCl dimer [8], in which, however, both Tl-Cl bonds are long (2.76,2.99 Å). Clearly there is no clear-cut separation between isolated TlR₂⁺ and X⁻ ions on the one hand and covalently linked TlR₂X on the other. In the title compound, the ions are linked into polymeric chains by even longer weak interactions of 3.046 and 3.119 Å between the anion Cl and cation Tl (cf. Tl...Cl 3.029 Å in TlMe₂⁺Cl⁻[6b]).

Complexes 1 and 2 behave as non-electrolytes in chloroform or nitromethane solution, but they are moderately conducting in acetone, although the measured molar conductivities are lower (38 and 33 $ohm^{-1} cm^2 mol^{-1}$, respectively) than expected for 1/1 electrolytes [9]. The ¹H NMR spectrum of 1 shows two multiplets at 2.56 and 2.29 ppm (ratio 2/1), confirming the presence of two inequivalent mesityl groups.

When a molar ratio TlCl₃/AgR of 1/2 is used, complex 1 (73% yield) and the known complexes TlCl(C₆F₃H₂)₂ (70%) [10] and TlCl(C₆F₅)₂ (78%) [5] are obtained (Scheme 1). A different result is observed for a molar ratio 1/3, which gives TlCl(mes)₂ (3) (57% yield) or solutions of TlR₃, from which the addition of dioxane (diox) allows the isolation of the known complexes TlR₃(diox), $R = C_6F_3H_2$ (55%) or C₆F₅ (60%) [11]. At room temperature, complex 3 is an air- and moisture-stable white solid. It behaves as a non-electrolyte in acetone and is dimeric (isopiestic method, M = 894, calc. 478 for the monomer) in chloroform, as has been found for other TlClR₂ derivatives [4,10,12,13].

Experimental

The instrumentation employed and general experimental techniques were as previously described [11].

Reactions of TICl₃ with AgR

(a) Molar ratio 1/1.5. Thallium(III) chloride (0.311 g, 1.0 mmol) was added to a diethyl ether (25 ml, $R = C_6F_3H_2$ or C_6F_5) or tetrahydrofuran (50 ml, R = mes) solution of AgR (R = mes [3] (0.340 g, 1.5 mmol), $R = C_6F_3H_2$ [1] (0.352 g, 1.5 mmol) or $R = C_6F_5$ [2] (0.412 g, 1.5 mmol)) and the mixture was stirred for 3 h under nitrogen. The AgCl was filtered off and the solution concentrated to ca. 10 ml. Addition of n-hexane (20 ml) gave a white precipitate of [Tl(mes)₂][TlCl₃(mes)] (1) (Found: C, 37.2; H, 4.0. $C_{27}H_{33}Cl_3Tl_2$ calcd.: C, 37.2; H, 3.8%. M.p. 186°C), [Tl($C_6F_3H_2$)₂][TlCl₃($C_6F_3H_2$)] (2) (Found: C, 24.3; H, 0.75. $C_{18}H_6Cl_3F_9Tl_2$ calcd.: C, 23.8; H, 0.65%. M.p. 145°C, dec.) or TlCl(C_6F_5)₂.

(b) Molar ratio 1/2. Thallium(III) chloride (0.311 g, 1.0 mmol) was added to a tetrahydrofuran solution (40 ml) of AgR (R = mes, 0.454 g, 2 mmol; R = C₆F₃H₂, 0.470 g, 2 mmol; R = C₆F₅, 0.549 g, 2 mmol). After 2 h stirring under nitrogen, the AgCl was filtered off and the filtrate concentrated to ca. 10 ml. Addition of

n-hexane (20 ml) gave a white precipitate of $[Tl(mes)_2][TlCl_3(mes)]$ (1). TlCl(C₆F₃H₂)₂ or TlCl(C₆F₅)₂.

(c) Molar ratio 1/3. Thallium(III) chloride (0.311 g. 1.0 mmol) was added to a tetrahydrofuran solution (40 ml) of AgR (R = mes, 0.681 g, 3 mmol; R = C₆F₃H₂, 0.705 g, 3 mmol; R = C₆F₅, 0.825 g, 3 mmol) and the mixture was stirred under nitrogen for 3 h. The AgCl was filtered off and the solution concentrated to ca. 10 ml. For R = mes, addition of n-hexane (20 ml) precipitated white TlCl(mes)₂ (3) (Found: C, 45.0; H, 4.85%. C₁₈H₂₂TlCl calcd.: C, 45.2; H, 4.65%. M.p. 200°C). For R = C₆F₃H₂ or C₆F₅, dioxan (1 ml) was added to the solution, and the products TlR₃(diox) were recrystallized from diethyl ether/hexane.

Crystal structure determination of $[Tl(mes)_2][TlCl_3(mes)]$ (1)

Crystal data: $C_{27}H_{33}Cl_{3}Tl_{2}$, M = 872.7, monoclinic, space group $P2_{1}/c$, a 12.956(2), b 13.218(2), c 16.889(3) Å, β 91.31(2)°, V 2891.5 Å³, Z = 4, D_{χ} 2.005 g cm⁻³, F(000) 1632, $\lambda(Mo-K_{\alpha})$ 0.71069 Å, μ 11.5 mm⁻¹.

Table 1

Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for complex 1

	X	у	Z	U _{eq} "
Tl(1)	6014.3(3)	5994.0(4)	2270.1(3)	61(1)
Tl(2)	3074.0(3)	8003.9(4)	2178.8(3)	65(1)
Cl(2)	3666(3)	8747(3)	3448(2)	86(1)
Cl(2)	2521(3)	9740(2)	1691(2)	83(1)
Cl(3)	4795(2)	7837(2)	1576(2)	80(1)
C(11)	4760(7)	5622(8)	3011(6)	56(4)
C(12)	3936(7)	5099(8)	2694(6)	50(3)
C(13)	3135(9)	4829(9)	3215(7)	70(5)
C(14)	3164(8)	5111(9)	4003(7)	65(4)
C(15)	4011(9)	5673(9)	4290(7)	69(4)
C(16)	4822(8)	5952(8)	3811(6)	57(4)
C(17)	3826(9)	4805(10)	1832(6)	74(5)
C(18)	2281(9)	4816(11)	4550(7)	91(5)
C(19)	5657(9)	6630(10)	4122(7)	75(5)
C(21)	7186(8)	6541(9)	1524(6)	63(4)
C(22)	8018(8)	7081(9)	1870(7)	67(4)
C(23)	8780(9)	7416(10)	1353(8)	85(5)
C(24)	8673(11)	7285(11)	538(9)	107(6)
C(25)	7829(11)	6766(11)	229(8)	88(6)
C(26)	7079(10)	6394(10)	694(7)	77(5)
C(27)	8123(10)	7304(11)	2748(7)	84(5)
C(28)	9540(10)	7774(13)	-1(11)	134(7)
C(29)	6158(12)	5889(12)	332(7)	93(6)
C(31)	1902(7)	6883(8)	1953(6)	54(4)
C(32)	1786(9)	6490(9)	1178(8)	75(5)
C(33)	1025(9)	5735(10)	1079(8)	88(5)
C(34)	398(11)	5387(10)	1673(9)	93(6)
C(35)	570(9)	5803(10)	2411(9)	80(5)
C(36)	1302(8)	6577(9)	2573(7)	63(4)
C(37)	2434(10)	6871(12)	484(7)	94(6)
C(38)	-438(11)	4610(11)	1499(11)	115(7)
C(39)	1438(9)	6988(10)	3408(7)	76(5)

^a Equivalent isotropic U defined as one third of the trace of the orthogonalized U_{ij} tensor.

• • •	•			
Tl(1)-Cl(3)	3.119(3)	Tl(1)-C(11)	2.131(10)	
TI(1)-C(21)	2.121(11)	Tl(1)-Cl(2a)	3.046(3)	
Tl(2)-Cl(1)	2.464(3)	Tl(2)-Cl(2)	2.536(3)	
Tl(2)~Cl(3)	2.482(3)	TI(2)-C(31)	2.149(10)	
C(11)C(12)	1.371(14)	C(11)-C(16)	1.419(14)	
C(12)-C(13)	1.422(15)	C(12) - C(17)	1.510(15)	
C(13)-C(14)	1.382(16)	C(14) - C(15)	1.402(16)	
C(14)-C(18)	1.538(17)	C(15)-C(16)	1.391(16)	
C(16)-C(19)	1.491(16)	C(21)-C(22)	1.409(16)	
C(21)-C(26)	1.418(16)	C(22)-C(23)	1.404(17)	
C(22)-C(27)	1.514(17)	C(23)-C(24)	1.392(21)	
C(24)-C(25)	1.383(20)	C(24)-C(28)	1.598(21)	
C(25)-C(26)	1.357(19)	C(26)-C(29)	1.487(19)	
C(31)-C(32)	1.412(17)	C(31)-C(36)	1.380(16)	
C(32)-C(33)	1.410(18)	C(32) - C(37)	1.543(18)	
C(33)-C(34)	1.384(20)	C(34) - C(35)	1.375(21)	
C(34)-C(38)	1.516(20)	C(35)-C(36)	1.416(17)	
C(36)-C(39)	1.519(17)		, ,	

Table 2 Bond lengths (Å) for complex 1

Table 3

Bond angles (°) for complex 1^{a}

Cl(3)-Tl(1)-C(11)	90.8(3)	Cl(3)-Tl(1)-C(21)	82.7(3)
C(11)-Tl(1)-C(21)	173.1(4)	Cl(3) - Tl(1) - Cl(2a)	161.0(1)
C(11) - Tl(1) - Cl(2a)	90.5(3)	C(21)-Tl(1)-Cl(2a)	94.8(3)
Cl(1) - Tl(2) - Cl(2)	90.1(1)	Cl(1) - Tl(2) - Cl(3)	97.3(1)
Cl(2)-Tl(2)-Cl(3)	101.3(1)	Cl(1)-Tl(2)-C(31)	129.3(3)
Cl(2) - Tl(2) - C(31)	111.9(3)	Cl(3) - Tl(2) - C(31)	120.2(3)
TI(2)-CI(2)-TI(1a)	97.9(1)	Tl(1)-Cl(3)-Tl(2)	111.5(1)
Tl(1)C(11)-C(12)	119.0(7)	Tl(1)-C(11)-C(16)	117.4(7)
C(12)-C(11)-C(16)	123.6(9)	C(11)-C(12)-C(13)	117.2(9)
C(11)-C(12)-C(17)	124.2(9)	C(13)-C(12)-C(17)	118.6(9)
C(12)-C(13)-C(14)	121.6(10)	C(13)-C(14)-C(15)	118.7(10)
C(13)-C(14)-C(18)	120.4(10)	C(15)-C(14)-C(18)	120.9(10)
C(14)-C(15)-C(16)	122.4(10)	C(11)-C(16)-C(15)	116.4(9)
C(11)-C(16)-C(19)	123.0(10)	C(15)-C(16)-C(19)	120.4(10)
Tl(1)-C(21)-C(22)	118.5(8)	Tl(1)-C(21)-C(26)	119.0(8)
C(22)-C(21)-C(26)	122.4(10)	C(21)-C(22)-C(23)	116.4(11)
C(21)-C(22)-C(27)	123.8(10)	C(23)-C(22)-C(27)	119.9(11)
C(22)-C(23)-C(24)	121.4(12)	C(23)-C(24)-C(25)	119.7(13)
C(23)-C(24)-C(28)	117.2(12)	C(25)-C(24)-C(28)	123.1(14)
C(24)-C(25)-C(26)	122.1(13)	C(21)-C(26)-C(25)	117.9(11)
C(21)-C(26)-C(29)	121.8(11)	C(25)-C(26)-C(29)	120.2(12)
Tl(2)-C(31)-C(32)	118.6(8)	TI(2)-C(31)-C(36)	118.4(8)
C(32)-C(31)-C(36)	123.0(10)	C(31)-C(32)-C(33)	115.5(11)
C(31)-C(32)-C(37)	122.4(11)	C(33)-C(32)-C(37)	122.2(12)
C(32)-C(33)-C(34)	124.7(13)	C(33)-C(34)-C(35)	115.9(12)
C(33)-C(34)-C(38)	120.8(14)	C(35)-C(34)-C(38)	123.2(14)
C(34)-C(35)-C(36)	123.9(13)	C(31)-C(36)-C(35)	116.8(11)
C(31)-C(36)-C(39)	123.0(10)	C(35)-C(36)-C(39)	120.1(11)
	• •		

^a Symmetry operator: (a) 1 - x, 0.5 + y, 0.5 - z.

Data collection and reduction. A colourless needle $0.65 \times 0.12 \times 0.12$ mm was mounted in a glass capillary and used to collect 7425 profile-fitted intensities [14] on a Stoe-Siemens four-circle diffractometer using monochromated Mo- K_{α} radiation $(2\theta_{\text{max}} 50^{\circ})$. Merging equivalents gave 5065 unique reflections ($R_{\text{int}} 0.039$), of which 3605 with $F > 4\sigma(F)$ were used for all calculations (program system SHELX-76, modified by its author Prof. G.M. Sheldrick). Absorption corrections based on ψ -scans were applied, with transmission factors 0.80-0.88. Cell constants were refined from 2θ values of 50 reflections in the range 20- 22°.

Structure solution and refinement: Heavy-atom method, followed by anisotropic least-squares refinement on F (full-matrix). H aoms included using a riding model. Weighting scheme $w^{-1} = \sigma^2(F) + 0.00015 F^2$. Final R 0.053 for 289 parameters; R_w 0.043; S 1.76; max. Δ/σ 0.08; max. $\Delta\rho$ 1 e Å⁻³. Final atomic coordinates are given in Table 1, with derived bond lengths and angles in Tables 2&3. Further details of the structure determination (H atom coordinates, thermal parameters, structure factors) have been deposited at the Fachinformationszentrum Energie Physik Mathematik, 7514 Eggenstein-Leopoldshafen 2, Fed. Rep. of Germany. Any request for this material should quote a full literature citation and the reference number CSD 53457.

Acknowledgements

We thank the Instituto de Estudios Riojanos, the CAYCIT and the Fonds der Chemischen Industrie for financial assistance. The X-ray measurements were performed at the Inorganic Chemistry Institute, University of Göttingen, Fed. Rep. of Germany.

References

- 1 R. Usón, A. Laguna, E.J. Fernández, A. Mendía and P.G. Jones, J. Organomet. Chem., 350 (1988) 129.
- 2 R. Usón, A. Laguna and J.A. Abad, J. Organomet. Chem., 246 (1983) 341.
- 3 S. Gambarotta, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Chem. Soc., Chem. Comm., (1983) 1087.
- 4 G.B. Deacon, J.H.S. Green and R.S. Nyholm, J. Chem. Soc., (1965) 3411.
- 5 R. Usón and A. Laguna, Inorg. Synth., 21 (1982) 71.
- 6 (a) Y.M. Chow and D. Britton, Acta Cryst., B31 (1975) 1922; (b) H.-D. Hausen, E. Veigel and H.-J. Guder, Z. Naturforsch. B, 29 (1974) 269; (c) A.J. Canty, K. Mills, B.W. Skelton and A.H. White, J. Chem. Soc., Dalton Trans., (1986) 939.
- 7 (a) Y.M. Chow and D. Britton, Acta Cryst., B, 31 (1975) 1929; (b) H. Luth and M.R. Truter, J. Chem.
 Soc. A, (1970) 1287; (c) G.B. Deacon, R.J. Phillips, K. Henrick and M. McPartlin, Inorg. Chim. Acta, 35 (1979) L335.
- 8 F. Brady, K. Henrick, R.W. Matthews and D.G. Gillies, J. Organomet. Chem., 193 (1980) 21.
- 9 W.J. Geary, Coord. Chem. Rev., 7 (1971) 81.
- 10 R. Usón, A. Laguna and T. Cuenca, J. Organomet. Chem., 194 (1980) 271.
- 11 R. Usón, A. Laguna, A. Abad and E. de Jesús, J. Chem. Soc., Dalton Trans., (1983) 1127.
- 12 G.B. Deacon and J.C. Parrot, J. Organomet. Chem., 15 (1968) 11.
- 13 H. Kurosawa and R. Okawara, Organomet. Chem. Rev. A, 6 (1970) 65.
- 14 W. Clegg, Acta Cryst. A, 37 (1981) 22.