Reactions of thallium(III) chloride with (aryl) silver(I) complexes. Crystal structure of $\left[\mathrm{Tl}\left(\mathrm{mes}_{2}\right]\left[\mathrm{TlCl}_{3}(\right.\right.$ mes $\left.)\right]$ (mes = mesityl)

Antonio Laguna,
Departamento de Quimica Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza (Spain)
Eduardo J. Fernández, Aránzazu Mendía, M ${ }^{\text {a }}$. Elena Ruiz-Romero, Colegio Universitario de la Rioja, Logroño (Spain)
and Peter G. Jones
Institut für Anorganische und Analytische Chemie der Technischen Universität, Hagenring 30, 3300 Braunschweig (Fed. Rep. of Germany)
(Received October 18th, 1988)

Abstract

The arylsilver derivatives $\mathrm{AgR}\left(\mathrm{R}=\right.$ mesityl, $\mathrm{C}_{6} \mathrm{~F}_{3} \mathrm{H}_{2}, \mathrm{C}_{6} \mathrm{~F}_{5}$) react with TlCl_{3} to give arylthallium(III) complexes of the types $\left[\mathrm{TlR}_{2}\right]\left[\mathrm{TlCl}_{3} \mathrm{R}\right], \mathrm{TlClR}_{2}$ or TlR_{3}. The structure of $\left[\mathrm{Tl}(\mathrm{mes})_{2}\right]\left[\mathrm{TlCl}_{3}\right.$ (mes) $]$ has been established by X-ray crystallography; it consists of linear $\left[\mathrm{Tl}(\mathrm{mes})_{2}\right]^{+}$cations and tetrahedral $\left[\mathrm{TlCl}_{3}(\text { mes })\right]^{-}$anions, linked into chains by additional weak $\mathrm{Tl} \ldots \mathrm{Cl}$ interactions.

Introduction

We recently reported the use of (polyhalophenyl)silver(I) complexes as arylating agents for halogold-(I), -(II) or -(III) derivatives [1]. We have now extended the study to the synthesis of arylthallium(III) complexes of the types [$\left.\mathrm{TlR}_{2}\right]\left[\mathrm{TlCl}_{3} \mathrm{R}\right]$, TlClR_{2} or TlR_{3} (where $\mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{5}, 2,4,6-\mathrm{C}_{6} \mathrm{~F}_{3} \mathrm{H}_{2}$ or mesityl) by the reaction of AgR with thallium(III) chloride.

Results and discussion

The syntheses of $\mathrm{AgC}_{6} \mathrm{~F}_{5}, \mathrm{Ag}\left(\mathrm{C}_{6} \mathrm{~F}_{3} \mathrm{H}_{2}\right)$, and $\mathrm{Ag}($ mes $)$ (mes $=$ mesityl) have been described elsewhere [1-3]. The reaction of AgR with TlCl_{3} gives different products, depending on the molar ratio and the R group. For a $\mathrm{TlCl}_{3} / \mathrm{AgR}$ ratio of $1 / 1.5$,
[TiMes ${ }_{2}$][TICl ${ }_{3}$ Mes]
(1)

TICIMes $_{2}$
(3)

$\mathrm{TiCl}_{3}+\mathrm{AgR}$

$\mathrm{TI}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ diox $\quad \mathrm{TICl}\left(\mathrm{C}_{5} \mathrm{~F}_{5}\right)_{2}$
Scheme 1
$\left[\mathrm{TlR}_{2}\right]\left[\mathrm{TlCl}_{3} \mathrm{R}\right]$ is obtained for $\mathrm{R}=$ mes (1, 53% yield) or $\mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{3} \mathrm{H}_{2}$ (2, 55% yield), but TlClR_{2} (45% yield) for $R=\mathrm{C}_{6} \mathrm{~F}_{5}$ (Scheme 1). (The last compound had already been prepared by other means [4,5].) Complexes 1 and 2 are air- and moisture-stable white solids. They are soluble in acetone, dichloromethane, chloroform, and nitromethane, and slightly soluble or insoluble in diethyl ether and aliphatic hydrocarbons.

The structure of complex 1 was established by X-ray diffraction studies. Single crystals were obtained by slow diffusion of diethyl ether into a concentrated dichloromethane solution of 1 at $-10^{\circ} \mathrm{C}$. The complex (Fig. 1) consists to a first approximation of isolated $\left[\mathrm{Tl}(\mathrm{mes})_{2}\right]^{+}$cations and $\left[\mathrm{TlCl}_{3}\right.$ (mes)] ${ }^{-}$anions. The cations are essentially linear at thallium ($\left.\mathrm{C}-\mathrm{Tl}-\mathrm{C} 173.1(4)^{\circ}\right)$, with $\mathrm{Tl}-\mathrm{C}$ bond lengths of $2.121(11), 2.131(10) \AA$ and a dihedral angle of 9° between the aromatic rings.

Fig. 1. One of the polymeric chains of $\left[\mathrm{Tl}(\text { mes })_{2}\right]\left[\mathrm{TlCl}_{3}\right.$ (mes) $]$ in the unit cell; the other chain (related by a centre of symmetry) is omitted. Radii are arbitrary. The weak $\mathrm{Tl} . . \mathrm{Cl}$ contacts are indicated by dotted lines.

Isolated $\mathrm{TlR}_{2}{ }^{+}$cations are well known for $\mathrm{R}=\mathrm{Me}[6]$, but we are not aware of any other examples $\mathrm{R}=$ aryl; thallium(III) has an appreciable tendency to increase its coordination number by dimer or polymer formation, often involving irregular coordination geometry (see, e.g., refs. 7). The anions adopt a somewhat distorted tetrahedral coordination geometry, with $\mathrm{Tl}-\mathrm{Cl} 2.464,2.482,2.536$ (3), $\mathrm{Tl}-\mathrm{C} 2.149(10)$ \AA and bond angles $90.1-129.3^{\circ}$. This appears to be the first example of a $\mathrm{Cl}_{3} \mathrm{C}$ coordination sphere for $\mathrm{Tl}^{\mathrm{III}} ; \mathrm{Cl}_{2} \mathrm{C}_{2}$ is known in the $\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right)_{2} \mathrm{TlCl}$ dimer [8], in which, however, both $\mathrm{Tl}-\mathrm{Cl}$ bonds are long ($2.76,2.99 \AA$). Clearly there is no clear-cut separation between isolated $\mathrm{TlR}_{2}{ }^{+}$and X^{-}ions on the one hand and covalently linked $\mathrm{TIR}_{2} X$ on the other. In the title compound, the ions are linked into polymeric chains by even longer weak interactions of 3.046 and $3.119 \AA$ between the anion Cl and cation Tl (cf. $\mathrm{Tl} \ldots \mathrm{Cl} 3.029 \AA$ in $\mathrm{TlMe}_{2}{ }^{+} \mathrm{Cl}^{-}$[6b]).

Complexes 1 and 2 behave as non-electrolytes in chloroform or nitromethane solution, but they are moderately conducting in acetone, although the measured molar conductivities are lower (38 and $33 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, respectively) than expected for $1 / 1$ electrolytes [9]. The ${ }^{1} \mathrm{H}$ NMR spectrum of 1 shows two multiplets at 2.56 and 2.29 ppm (ratio $2 / 1$), confirming the presence of two inequivalent mesityl groups.

When a molar ratio $\mathrm{TlCl}_{3} / \mathrm{AgR}$ of $1 / 2$ is used, complex 1 (73% yield) and the known complexes $\operatorname{TlCl}\left(\mathrm{C}_{6} \mathrm{~F}_{3} \mathrm{H}_{2}\right)_{2}(70 \%)$ [10] and $\operatorname{\Gamma lCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(78 \%)$ [5] are obtained (Scheme 1). A different result is observed for a molar ratio $1 / 3$, which gives $\mathrm{TlCl}(\mathrm{mes})_{2}(3)\left(57 \%\right.$ yield) or solutions of TlR_{3}, from which the addition of dioxane (diox) allows the isolation of the known complexes Tl_{3} (diox), $\mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{3} \mathrm{H}_{2}$ (55%) or $\mathrm{C}_{6} \mathrm{~F}_{5}(60 \%)$ [11]. At room temperature, complex 3 is an air- and moisture-stable white solid. It behaves as a non-electrolyte in acetone and is dimeric (isopiestic method, $M=894$, calc. 478 for the monomer) in chloroform, as has been found for other TlClR_{2} derivatives $[4,10,12,13]$.

Experimental

The instrumentation employed and general experimental techniques were as previously described [11].

Reactions of TlCl_{3} with AgR
(a) Molar ratio $1 / 1.5$. Thallium(III) chloride ($0.311 \mathrm{~g}, 1.0 \mathrm{mmol}$) was added to a diethyl ether ($25 \mathrm{ml}, \mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{3} \mathrm{H}_{2}$ or $\mathrm{C}_{6} \mathrm{~F}_{5}$) or tetrahydrofuran ($50 \mathrm{ml}, \mathrm{R}=$ mes) solution of $\mathrm{AgR}\left(\mathrm{R}=\right.$ mes [3] ($0.340 \mathrm{~g}, 1.5 \mathrm{mmol}$), $\mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{3} \mathrm{H}_{2}$ [1] ($0.352 \mathrm{~g}, 1.5$ $\mathrm{mmol})$ or $\mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{5}$ [2] ($\left.0.412 \mathrm{~g}, 1.5 \mathrm{mmol}\right)$) and the mixture was stirred for 3 h under nitrogen. The AgCl was filtered off and the solution concentrated to ca. 10 ml . Addition of n -hexane (20 ml) gave a white precipitate of $\left[\mathrm{Tl}(\mathrm{mes})_{2}\right]\left[\mathrm{TlCl}_{3}(\mathrm{mes})\right]$ (1) (Found: $\mathrm{C}, 37.2 ; \mathrm{H}, 4.0 . \mathrm{C}_{27} \mathrm{H}_{33} \mathrm{Cl}_{3} \mathrm{Tl}_{2}$ calcd.: $\mathrm{C}, 37.2 ; \mathrm{H}, 3.8 \%$. M.p. $186^{\circ} \mathrm{C}$), $\left[\mathrm{Tl}\left(\mathrm{C}_{6} \mathrm{~F}_{3} \mathrm{H}_{2}\right)_{2}\right]\left[\mathrm{TlCl} \mathrm{l}_{3}\left(\mathrm{C}_{6} \mathrm{~F}_{3} \mathrm{H}_{2}\right)\right]$ (2) (Found: $\mathrm{C}, 24.3 ; \mathrm{H}, 0.75 . \mathrm{C}_{18} \mathrm{H}_{6} \mathrm{Cl}_{3} \mathrm{~F}_{9} \mathrm{Tl}_{2}$ calcd.: $\mathrm{C}, 23.8 ; \mathrm{H}, 0.65 \%$. M.p. $145^{\circ} \mathrm{C}$, dec.) or $\mathrm{TlCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$.
(b) Molar ratio $1 / 2$. Thallium(III) chloride $(0.311 \mathrm{~g}, 1.0 \mathrm{mmol})$ was added to a tetrahydrofuran solution (40 ml) of $\mathrm{AgR}\left(\mathrm{R}=\right.$ mes, $0.454 \mathrm{~g}, 2 \mathrm{mmol} ; \mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{3} \mathrm{H}_{2}$, $\left.0.470 \mathrm{~g}, 2 \mathrm{mmol} ; \mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{5}, 0.549 \mathrm{~g}, 2 \mathrm{mmol}\right)$. After 2 h stirring under nitrogen, the AgCl was filtered off and the filtrate concentrated to ca. 10 ml . Addition of
n-hexane (20 ml) gave a white precipitate of $\left[\mathrm{Tl}(\text { mes })_{2}\right]\left[\mathrm{TlCl}_{3}\right.$ (mes) $]$ (1). $\mathrm{TlCl}\left(\mathrm{C}_{6} \mathrm{~F}_{3} \mathrm{H}_{2}\right)_{2}$ or $\mathrm{TlCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$.
(c) Molar ratio $1 / 3$. Thallium(III) chloride (0.311 g .1 .0 mmol) was added to a tetrahydrofuran solution (40 ml) of $\mathrm{AgR}\left(\mathrm{R}=\right.$ mes, $0.681 \mathrm{~g}, 3 \mathrm{mmol} ; \mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{3} \mathrm{H}_{2}$, $0.705 \mathrm{~g}, 3 \mathrm{mmol} ; \mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{5}, 0.825 \mathrm{~g}, 3 \mathrm{mmol}$) and the mixture was stirred under nitrogen for 3 h . The AgCl was filtered off and the solution concentrated to ca. 10 ml . For $\mathrm{R}=$ mes, addition of n -hexane (20 ml) precipitated white TlCl (mes) $)_{2}$ (3) (Found: C, 45.0; H, 4.85\%. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{TlCl}$ calcd: $\mathrm{C}, 45.2 ; \mathrm{H}, 4.65 \%$. M.p. $200^{\circ} \mathrm{C}$). For $\mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{3} \mathrm{H}_{2}$ or $\mathrm{C}_{6} \mathrm{~F}_{5}$, dioxan (1 ml) was added to the solution, and the products TIR_{3} (diox) were recrystallized from diethyl ether/hexane.

Crystal structure determination of [Tl(mes) $)_{2}\left[\mathrm{TlCl}_{3}(\right.$ mes $\left.)\right]$ (I)
Crystal data: $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{Cl}_{3} \mathrm{Tl}_{2}, M=872.7$. monoclinic, space group $P 2_{1} / c, a$ $12.956(2), b 13.218(2), c 16.889(3) \AA, \beta 91.31(2)^{\circ}, V 2891.5 \AA^{3}, Z=4, D_{\mathrm{x}} 2.005 \mathrm{~g}$ $\mathrm{cm}^{-3} . F(000) 1632 . \lambda\left(\mathrm{Mo}_{\mathrm{o}}\right) 0.71069 \AA, \mu 11.5 \mathrm{~mm}^{-1}$.

Table 1
Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for complex 1

	x	y	2	$U_{\mathrm{eq}}{ }^{\prime \prime}$
Tl(1)	6014.3(3)	5994.0(4)	2270.1(3)	$61(1)$
Tl(2)	3074.0(3)	8003.9(4)	2178.8(3)	$65(1)$
$\mathrm{Cl}(2)$	3666(3)	8747(3)	3448(2)	$86(1)$
$\mathrm{Cl}(2)$	2521(3)	9740(2)	1691(2)	$83(1)$
$\mathrm{Cl}(3)$	4795(2)	7837(2)	1576(2)	$80(1)$
C(11)	4760(7)	5622(8)	3011(6)	$56(4)$
C(12)	3936(7)	5099(8)	2694(6)	$50(3)$
C(13)	$3135(9)$	4829(9)	3215(7)	$70(5)$
C(14)	3164(8)	5111(9)	4003(7)	$65(4)$
C(15)	4011(9)	5673(9)	429047)	69(4)
C(16)	4822(8)	5952(8)	3811(6)	$57(4)$
C(17)	3826(9)	4805(10)	1832(6)	$74(5)$
$\mathrm{C}(18)$	2281(9)	4816(11)	4550(7)	$91(5)$
C(19)	5657(9)	6630(10)	4122(7)	$75(5)$
C(21)	$7186(8)$	6541(9)	1524(6)	$63(4)$
$\mathrm{C}(22)$	8018(8)	7081(9)	1870(7)	6.7(4)
C(23)	$8780(9)$	7416 (10)	$1353(8)$	$85(5)$
C(24)	8673(11)	7285(11)	538(9)	107(6)
$\mathrm{C}(25)$	7829(11)	6766(11)	$229(8)$	$88(6)$
$\mathrm{C}(26)$	7079(10)	6394(10)	694(7)	$77(5)$
$\mathrm{C}(27)$	8123(10)	7304(11)	2748(7)	84(5)
$C(28)$	$9540(10)$	7774(13)	- 1(11)	134(7)
C(29)	$6158(12)$	5889(12)	332(7)	$93(6)$
$\mathrm{C}(31)$	1902(7)	6883(8)	1953(6)	54(4)
$\mathrm{C}(32)$	1786 (9)	6490(9)	1178(8)	$75(5)$
C(33)	1025(9)	5735(10)	1079(8)	88(5)
C(34)	398(11)	5387(10)	1673(9)	$93(6)$
C(35)	$570(9)$	5803(10)	2411(9)	80(5)
C(36)	$1302(8)$	6577(9)	2573(7)	63.4)
$\mathrm{C}(37)$	2434(10)	6871(12)	484(7)	94(6)
$\mathrm{C}(38)$	-438(11)	4610(11)	1499(11)	115(7)
C(39)	1438(9)	6988(10)	3408(7)	76(5)

[^0]Table 2
Bond lengths (\AA) for complex 1

$\mathrm{Tl}(1)-\mathrm{Cl}(3)$	$3.119(3)$	$\mathrm{Tl}(1)-\mathrm{C}(11)$	$2.131(10)$
$\mathrm{Tl}(1)-\mathrm{C}(21)$	$2.121(11)$	$\mathrm{Tl}(1)-\mathrm{Cl}(2 \mathrm{a})$	$3.046(3)$
$\mathrm{Tl}(2)-\mathrm{Cl}(1)$	$2.464(3)$	$\mathrm{Tl}(2)-\mathrm{Cl}(2)$	$2.536(3)$
$\mathrm{T}(2)-\mathrm{Cl}(3)$	$2.482(3)$	$\mathrm{Tl}(2)-\mathrm{C}(31)$	$2.149(10)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.371(14)$	$\mathrm{C}(11)-\mathrm{C}(16)$	$1.419(14)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.422(15)$	$\mathrm{C}(12)-\mathrm{C}(17)$	$1.510(15)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.382(16)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.402(16)$
$\mathrm{C}(14)-\mathrm{C}(18)$	$1.538(17)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.391(16)$
$\mathrm{C}(16)-\mathrm{C}(19)$	$1.491(16)$	$\mathrm{C}(21)-\mathrm{C}(22)$	$1.409(16)$
$\mathrm{C}(21)-\mathrm{C}(26)$	$1.418(16)$	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.404(17)$
$\mathrm{C}(22)-\mathrm{C}(27)$	$1.514(17)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.392(21)$
$\mathrm{C}(24)-\mathrm{C}(25)$	$1.383(20)$	$\mathrm{C}(24)-\mathrm{C}(28)$	$1.598(21)$
$\mathrm{C}(25)-\mathrm{C}(26)$	$1.357(19)$	$\mathrm{C}(26)-\mathrm{C}(29)$	$1.487(19)$
$\mathrm{C}(31)-\mathrm{C}(32)$	$1.412(17)$	$\mathrm{C}(31)-\mathrm{C}(36)$	$1.380(16)$
$\mathrm{C}(32)-\mathrm{C}(33)$	$1.410(18)$	$\mathrm{C}(34)-\mathrm{C}(37)$	$1.543(18)$
$\mathrm{C}(33)-\mathrm{C}(34)$	$\mathrm{C}(35)-\mathrm{C}(36)$	$1.375(21)$	
$\mathrm{C}(34)-\mathrm{C}(38)$	$1.584(20)$	$1.416(17)$	
$\mathrm{C}(36)-\mathrm{C}(39)$	$1.519(20)$		

Table 3
Bond angles (${ }^{\circ}$) for complex 1^{a}

$\mathrm{Cl}(3)-\mathrm{Tl}(1)-\mathrm{C}(11)$	$90.8(3)$	$\mathrm{Cl}(3)-\mathrm{Tl}(1)-\mathrm{C}(21)$	$82.7(3)$
$\mathrm{C}(11)-\mathrm{Tl}(1)-\mathrm{C}(21)$	$173.1(4)$	$\mathrm{Cl}(3)-\mathrm{Tl}(1)-\mathrm{Cl}(2 \mathrm{a})$	$161.0(1)$
$\mathrm{C}(11)-\mathrm{Tl}(1)-\mathrm{Cl}(2 \mathrm{a})$	$90.5(3)$	$\mathrm{C}(21)-\mathrm{Tl}(1)-\mathrm{Cl}(2 \mathrm{a})$	$94.8(3)$
$\mathrm{Cl}(1)-\mathrm{Tl}(2)-\mathrm{Cl}(2)$	$90.1(1)$	$\mathrm{Cl}(1)-\mathrm{Tl}(2)-\mathrm{Cl}(3)$	$97.3(1)$
$\mathrm{Cl}(2)-\mathrm{Tl}(2)-\mathrm{Cl}(3)$	$101.3(1)$	$\mathrm{Cl}(1)-\mathrm{Tl}(2)-\mathrm{C}(31)$	$129.3(3)$
$\mathrm{Cl}(2)-\mathrm{Tl}(2)-\mathrm{C}(31)$	$111.9(3)$	$\mathrm{Cl}(3)-\mathrm{Tl}(2)-\mathrm{C}(31)$	$120.2(3)$
$\mathrm{Tl}(2)-\mathrm{Cl}(2)-\mathrm{Tl}(1 a)$	$97.9(1)$	$\mathrm{Tl}(1)-\mathrm{Cl}(3)-\mathrm{Tl}(2)$	$111.5(1)$
$\mathrm{Tl}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$119.0(7)$	$\mathrm{Tl}(1)-\mathrm{C}(11)-\mathrm{C}(16)$	$117.4(7)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	$123.6(9)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$117.2(9)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(17)$	$124.2(9)$	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(17)$	$118.6(9)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$121.6(10)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$118.7(10)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(18)$	$120.4(10)$	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(18)$	$120.9(10)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$122.4(10)$	$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	$116.4(9)$
$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(19)$	$123.0(10)$	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(19)$	$120.4(10)$
$\mathrm{Tl}(1)-\mathrm{C}(21)-\mathrm{C}(22)$	$118.5(8)$	$\mathrm{Tl}(1)-\mathrm{C}(21)-\mathrm{C}(26)$	$119.0(8)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(26)$	$122.4(10)$	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$116.4(11)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(27)$	$123.8(10)$	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(27)$	$119.9(11)$
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$121.4(12)$	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$119.7(13)$
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(28)$	$117.2(12)$	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(28)$	$123.1(14)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$122.1(13)$	$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(25)$	$117.9(11)$
$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(29)$	$121.8(11)$	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(29)$	$120.2(12)$
$\mathrm{T}(2)-\mathrm{C}(31)-\mathrm{C}(32)$	$118.6(8)$	$\mathrm{T}(2)-\mathrm{C}(31)-\mathrm{C}(36)$	$118.4(8)$
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(36)$	$123.0(10)$	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	$115.5(11)$
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(37)$	$122.4(11)$	$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(37)$	$122.2(12)$
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	$124.7(13)$	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	$115.9(12)$
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(38)$	$120.8(14)$	$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{C}(38)$	$123.2(14)$
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	$123.9(13)$	$\mathrm{C}(31)-\mathrm{C}(36)-\mathrm{C}(35)$	$116.8(11)$
$\mathrm{C}(31)-\mathrm{C}(36)-\mathrm{C}(39)$	$123.0(10)$	$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(39)$	$120.1(11)$
$\mathrm{S}(12$			

[^1]Dato collection and reduction. A colourless needle $0.65 \times 0.12 \times 0.12 \mathrm{~mm}$ was mounted in a glass capillary and used to collect 7425 profile-fitted intensities [14] on a Stoe-Siemens four-circle diffractometer using monochromated Mo- $K_{\text {ar }}$ radiation ($2 \theta_{\max } 50^{\circ}$). Merging equivalents gave 5065 unique reflections ($R_{\text {int }} 0.039$), of which 3605 with $F>4 \sigma(F)$ were used for all calculations (program system SHELX76, modified by its author Prof. G.M. Sheldrick). Absorption corrections based on ψ-scans were applied, with transmission factors $0.80-0.88$. Cell constants were refined from 2θ values of 50 reflections in the range 2022°.

Structure solution and refinement: Heavy-atom method, followed by anisotropic least-squares refinement on F (full-matrix). H aoms included using a riding model. Weighting scheme $w^{-1}=\sigma^{2}(F)+0.00015 F^{2}$. Final $R 0.053$ for 289 parameters; $R_{\mathrm{w}} 0.043 ; S 1.76 ; \max . \Delta / \sigma 0.08 ; \max . \Delta \rho 1 \mathrm{e}^{\mathrm{A}^{-3}}$. Final atomic coordinates are given in Table 1, with derived bond lengths and angles in Tables $2 \& 3$. Further details of the structure determination (H atom coordinates, thermal parameters, structure factors) have been deposited at the Fachinformationszentrum Energie Physik Mathematik, 7514 Eggenstein-Leopoldshafen 2, Fed. Rep. of Germany. Any request for this material should quote a full literature citation and the reference number CSD 53457.

Acknowledgements

We thank the Instituto de Estudios Riojanos, the CAYCIT and the Fonds der Chemischen Industrie for financial assistance. The X-ray measurements were performed at the Inorganic Chemistry Institute, University of Göttingen. Fed. Rep. of Germany.

References

[^2]
[^0]: " Equivalent isotropic U defined as one third of the trace of the orthogonalized U_{i}, tensor.

[^1]: ${ }^{a}$ Symmetry operator: (a) $1-x, 0.5+y, 0.5-z$.

[^2]: 1 R. Usón, A. Laguna, E.J. Fernández, A. Mendía and P.G. Jones, J. Organomet. Chem., 350 (1988) 129.

 2 R. Usón, A. Laguna and J.A. Abad, J. Organomet. Chem., 246 (1983) 341.
 3 S. Gambarotta, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Chem. Soc., Chem. Comm., (1983) 1087.

 4 G.B. Deacon. J.H.S. Green and R.S. Nyholm, J. Chem. Soc., (1965) 3411
 5 R. Uson and A. Laguna, Inorg. Synsh., 21 (1982) 71.
 6 (a) Y.M. Chow and D. Britton, Acta Cryst., B31 (1975) 1922; (b) H.-D. Hausen, E. Veigel and H.-J. Guder, Z. Naturforsch. B, 29 (1974) 269; (c) A.J. Canty, K. Mills. B.W. Skelton and A.H. White. J. Chem. Soc., Dalton Trans., (1986) 939.
 7 (a) Y.M. Chow and D. Britton, Acta Cryst., B, 31 (1975) 1929; (b) H. Luth and M.R. Truter, J. Chem. Soc. A, (1970) 1287; (c) G.B. Deacon, R.J. Phillips, K. Henrick and M. McPartlin, Inorg. Chim. Acta. 35 (1979) L335.
 8 F. Brady, K. Henrick, R.W. Matthews and D.G. Gillies, J. Organomet. Chem., 193 (1980) 21.
 9 W.J. Geary, Coord. Chem. Rev., 7 (1971) 81.
 10 R. Usón, A. Laguna and T. Cuenca, J. Organomet. Chem., 194 (1980) 271.
 11 R. Usón, A. Laguna, A. Abad and E. de Jesús, J. Chem. Soc., Dalton Trans., (1983) 1127.
 12 G.B. Deacon and J.C. Parrot, J. Organomet. Chem., 15 (1968) 11.
 13 H. Kurosawa and R. Okawara, Organomet. Chem. Rev. A, 6 (1970) 65.
 14 W. Clegg, Arta Cryst. A, 37 (1981) 22.

